

Discrete Mixed I/O Modules

Discrete mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Discrete output modules send control signals to devices such as contactors, indicator lamps, and interposing relays that can also have two states. Discrete mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Modules require a carrier base (IC200CHSxxx).

IC200MDD840
VersaMax Discrete Mixed Modules, 24 VDC Pos Logic Input 20 points/ Output Relay 2.0 A, 12 points

Lifecycle Status	Active	Active	Active
Input Voltage	24 VDC	24 VDC	24 VDC
Output Voltage	0-125 VDC, 5/24/125 VDC nominal; $0-265$ VAC ($47-63 \mathrm{~Hz}$), 120/240 VAC nominal	24 VDC	$\begin{gathered} \text { 0-125 VDC, 5/24/125 VDC nominal; } \\ \text { 0-265 VAC (47-63 Hz), } \\ \text { 120/240 VAC nominal } \end{gathered}$
Number of Points	$20 \mathrm{in} / 12$ out	16 in/16 out	10 in/6 out
Channel to Channel Isolation	No	No	No
Load Current per Point	2.0 A for 5-265 VAC, 2.0 A for 5-30 VDC	0.5 A for 30 VDC	2.0 A for 5-265 VAC, 2.0 A for 5-30 VDC, 0.2 A for 31-125 VDC
Input and Output Response Time- On/Off(ms)	0.5 and 10	0.5 and 0.5	0.5 and 10
Protection	No internal fuses or snubbers	Short circuit protection, overcurrent protection, free-wheeling diodes	No internal fuses or snubbers
On State Current	2.0-5.5 mA	2.0-5.5 mA	2.0-5.5 mA
Off State Current	$0-0.5 \mathrm{~mA}$	0-0.5 mA	0-0.5 mA
External Power Supply	0-125 VDC, 5/24/125 VDC nominal; 0-265 VAC ($47-63 \mathrm{~Hz}$), 120/240 VAC nominal	18-30 VDC, 24 VDC nominal	0-125 VDC, 5/24/125 VDC nominal, 0-265 VAC ($47-63 \mathrm{~Hz}$), 120/240 VAC nominal
Input Impedance	10 kOhms maximum	10 kOhms maximum	10 kOhms maximum
Load Current	2.0 A for $5-265 \mathrm{VAC}$ or 5-30 VDC, 0.2 A for 31-125 VDC	0.5 Amp at 30 VDC maximum (resistive); 2.0 Amps maximum for 100ms inrush	10 mA per point minimum, 8.0 A maximum per module; 2.0 Amps for 5 to 265 VAC maximum (resistive); 2.0 Amps for 5 to 30 VDC maximum (resistive); 0.2 Amp for 31 to 125 VDC maximum (resistive)
5V Backplane Current Consumption (mA)	375 maximum	100 maximum	190 maximum
LED Indicators	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present
Dimensions ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Mixed I/O Modules

Discrete mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Discrete output modules send control signals to devices such as contactors, indicator lamps, and interposing relays that can also have two states. Discrete mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Modules require a carrier base (IC200CHSxxx).

IC200MDD844

Product Name	VersaMax Discrete Mixed Modules 24 VDC Positive Logic Input 16/Output 24 VDC 0.5 A 16 points	VersaMax Discrete Mixed Modules 24 VDC Positive Logic Input 16/Output Relay 2.0A Isolated 8 points	VersaMax Discrete Mixed Modules 120 VAC Input 8 points/Outpoints Relay 2.0A Isolated 8 points
Lifecycle Status	Active	Active	Active
Input Voltage	24 VDC	24 VDC	120 VAC
Output Voltage	24 VDC	$0-125$ VDC, 5/24/125 VDC nominal; $0-265 \mathrm{VAC}(47-63 \mathrm{~Hz})$, 120/240 VAC nominal	$\begin{gathered} \text { 0-125 VDC, 5/24/125 VDC nominal; } \\ 0-265 \text { VAC (47-63 Hz), } \\ \text { 120/240 VAC nominal } \end{gathered}$
Number of Points	16 in/16 out	16 in/8 out	8 in/8 out
Channel to Channel Isolation	No	Yes, outputs	Yes, outputs
Load Current per Point	0.5 A for 30 VDC	2.0 A for 5-265 VAC, 2.0 A for 5-30 VDC, 0.2 A for 31-125 VDC	2.0 A for 5-265 VAC, 2.0 A for 5-30 VDC, 0.2 A for 31-125 VDC
Input and Output Response Time- On/Off(ms)	0.5 and 0.2 ON / 1.0 OFF	0.5 and 10	1 AC cycle minimum and 2 AC cycle (Hz dependent) maximum and 10.0 OFF
Protection	No internal fuses	No internal fuses or snubbers	No internal fuses or snubbers
On State Current	2.0-5.5 mA	$2.0-5.5 \mathrm{~mA}$	5 mA minimum
Off State Current	$0-0.5 \mathrm{~mA}$	$0-0.5 \mathrm{~mA}$	2.5 mA maximum
External Power Supply	18-30 VDC, 24 VDC nominal	0-125 VDC, 5/24/125 VDC nominal; $0-265 \mathrm{VAC}(47-63 \mathrm{~Hz}), 120 / 240 \mathrm{VAC}$ nominal	0-125 VDC, 5/24/125 VDC nominal; $0-265 \mathrm{VAC}(47-63 \mathrm{~Hz}), 120 / 240 \mathrm{VAC}$ nominal
Input Impedance	10 kOhms maximum	10 kOhms maximum	8.6 kOhms (reactive) at 60 Hz , typical; 10.32 kOhms (reactive) at 50 Hz , typical
Load Current	0.5 Amp at 30 VDC maximum (resistive) 2.0 Amps maximum for 100 ms inrush	10 mA per point minimum 2.0 A for 5 to 265 VAC maximum (resistive) 2.0 A for 5 to 30 VDC maximum (resistive) 0.2 A for 31 to 125 VDC maximum (resistive)	10 mA per point minimum 2.0 A for 5 to 265 VAC maximum (resistive) 2.0 A for 5 to 30 VDC maximum (resistive) 0.2 A for 31 to 125 VDC maximum (resistive)
5V Backplane Current Consumption (mA)	70 maximum	270 maximum	300 maximum
LED Indicators	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present
Dimensions ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) x 66.8 mm (2.63 in) x 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Mixed I/O Modules

Discrete mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Discrete output modules send control signals to devices such as contactors, indicator lamps, and interposing relays that can also have two states. Discrete mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Modules require a carrier base (IC200CHSxxx).

IC200MDD847

	IC200MDD847	IC200MDD848	IC200MDD849
Product Name	VersaMax Discrete Mixed Modules 240 VAC Input 8 points/Output Relay 2.0A Isolated 8 points	VersaMax Discrete Mixed Modules 120 VAC Input 8 points/Output 120 VAC 0.5A Isolated 8 points	VersaMax Discrete Mixed Modules 120 VAC Input Isolated 8 points/Output Relay 2.0 A Isolated 8 points
Lifecycle Status	Active	Active	Active
Input Voltage	240 VAC	120 VAC	0-132 VAC (47 to 63 Hz), 120 VAC nominal
Output Voltage	$\begin{gathered} \text { 0-125 VDC, 5/24/125 VDC nominal; } \\ 0-265 \text { VAC (47-63 Hz), } \\ \text { 120/240 VAC nominal } \end{gathered}$	120 VAC	0-125 VDC, 5/24/125 VDC nominal; $0-265$ VAC ($47-63 \mathrm{~Hz}$), 120/240 VAC nominal
Number of Points	8 in/8 out	8 in/8 out	8 in/8 out
Channel to Channel Isolation	Yes, outputs	Yes	Yes
Load Current per Point	2.0 A for 5-265 VAC, 2.0 A for 5-30 VDC, 0.2 A for 31-125 VDC	10 mA min, 0.5 A max., 5 A for 1 cycle (20 ms) max. inrush	2.0 A
Input and Output Response Time- On/Off(ms)	1 AC cycle minimum and 2 AC cycle (Hz dependent) maximum and 10.0 OFF	1 cycle/2 cycle and $<1 / 2$ cycle/<1/2 cycle	1 cycle/2 cycle and 10/10
Protection	No internal fuses or snubbers	Snubber and MOVs (each output)	No internal fuses or snubbers
On State Current	4 mA minimum	5 mA minimum	5 mA minimum
Off State Current	1.5 mA maximum	2.5 mA maximum	2.5 mA maximum
External Power Supply	0-125 VDC, 5/24/125 VDC nominal; $0-265 \mathrm{VAC}(47-63 \mathrm{~Hz}), 120 / 240 \mathrm{VAC}$ nominal	0-125 VDC, 5/24/125 VDC nominal; $0-265 \mathrm{VAC}(47-63 \mathrm{~Hz}), 120 / 240 \mathrm{VAC}$ nominal	N/A
Input Impedance	38.5 kOhms (reactive) at 60 Hz , typical; 46.3 kOhms (reactive) at 50 Hz , typical	8.6 kOhms (reactive) at 60 Hz , typical; 10.32 kOhms (reactive) at 50 Hz , typical	8.6 kOhms (reactive) at 60 Hz , typical; 10.32 kOhms (reactive) at 50 Hz , typical
Load Current	10 mA per point minimum 2.0 Amps for 5 to 265 VAC maximum (resistive) 2.0 Amps for 5 to 30 VDC maximum (resistive) 0.2 Amp for 31 to 125 VDC maximum (resistive)	10 mA minimum per point, 0.5 A maximum per point, 5.0 A for one cycle (20 ms) maximum inrush	10 mA per point minimum; 2.0 A for 5-265 VAC maximum (resistive); 2.0 A for 5-30 VDC maximum (resistive); 0.2 A for 31-125 VDC maximum (resistive)
5V Backplane Current Consumption (mA)	300 maximum	125 maximum	300 maximum
LED Indicators	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present
Dimensions (W x H x D	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm 1.956 in), not including the height of (the carrier or the mating connectors

Discrete Mixed I/O Modules

Discrete mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Discrete output modules send control signals to devices such as contactors, indicator lamps, and interposing relays that can also have two states. Discrete mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Modules require a carrier base (IC200CHSxxx).
IC200MDD850 IC200MDD851

Product Name	VersaMax Discrete Mixed Modules 240 VAC Input Isolated 4 points/Output Relay 2.0 A Isolated 8 points	VersaMax Discrete Mixed Modules 5/12 VDC Input 16 points/Output 12/24 VDC 16 points
Lifecycle Status	Active	Active
Input Voltage	0-264 VAC ($47-63 \mathrm{~Hz}$), 240 VAC nominal	0 to 15 VDC, $+5 / 12 \mathrm{VDC}$ nominal
Output Voltage	$\begin{gathered} \text { 0-125 VDC, 5/24/125 VDC nominal; } \\ 0-265 \text { VAC (47-63 Hz), } \\ \text { 120/240 VAC nominal } \end{gathered}$	+10.2 to +30 VDC, +12/24 VDC nominal
Number of Points	8 out/4 in	16 out/16 in
Channel to Channel Isolation	Yes	No
Load Current per Point	2.0 A	0.5 Amps at 30 VDC maximum (resistive) 2.0 Amps maximum for 100 ms inrush
Input and Output Response Time- On/Off(ms)	1 cycle/2 cycle and 10/10	0.25 ms maximum $/ 0.2 \mathrm{~ms}$ ON and 1.0 ms OFF maximum
Protection	No internal fuses or snubbers	No internal fuses or snubbers
On State Current	4 mA minimum	1.45 mA minimum
Off State Current	1.5 mA maximum	0 to 0.7 mA maximum
External Power Supply	N/A	+10.2 to +30 VDC, +12/24 VDC nominal
Input Impedance	38.5 kOhms (reactive) at 60 Hz , typical; 46.3 kOhms (reactive) at 50 Hz , typical	2.4kOhms typical @ 12 VDC
Load Current	10 mA per point minimum; 2.0 A for 5-265 VAC maximum (resistive); 2.0 A for 5-30 VDC maximum (resistive); 0.2 A for 31-125 VDC maximum (resistive)	0.5 Amps at 30 VDC maximum (resistive); 2.0 Amps maximum for 100 ms inrush
5V Backplane Current Consumption (mA)	260 maximum	115 maximum
LED Indicators	One LED per point shows individual point on/off state logic side); OK LED indicates backplane power is present	One LED per point shows individual point on/off state (logic side); OK LED indicates backplane power is present
Dimensions ($\mathbf{~ x ~ H ~ x ~ D ~})$	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Input Modules

Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Modules require a carrier base (IC200CHSxxx).

	IC200MDL140	IC200MDL141	IC200MDL143
Product Name	VersaMax Discrete Input Module 120 VAC, 8 points	VersaMax Discrete Input Module 240 VAC, 8 points	VersaMax Discrete Input Module 120 VAC Isolated, 8 points
Lifecycle Status	Active	Active	Active
Input Voltage	0-132 VAC	0-264 VAC	0-132 VAC
Number of Points	8	8	8
Channel to Channel Isolation	No	No	Yes
Input and Output Response Time- On/Off (ms)	1 cycle/2 cycles	1 cycle/2 cycles	1 cycle/2 cycles
Points per Common	1 group of 8	1 group of 8	8 groups of 1
On State Current	5 mA minimum	7 mA minimum	5 mA minimum
Off State Current	2.5 mA maximum	1.5 mA maximum	2.5 mA maximum
Input Impedance	8.6 kOhms (reactive) at 60 Hz , typical; 10.32 kOhms (reactive) at 50 Hz , typical	38.5 kOhms (reactive) at 60 Hz , typical; 46.3 kOhms (reactive) at 50 Hz , typical	8.6 kOhms (reactive) at 60 Hz , typical; 10.32 kOhms (reactive) at 50 Hz , typical
5V Backplane Current Consumption (mA)	55 maximum	55 maximum	50 maximum
LED Indicators	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present
Dimensions (Wx H x D	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Input Modules

Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Modules require a carrier base (IC200CHSxxx).

	IC200MDL144	IC200MDL240	IC200MDL241
Product Name	VersaMax Discrete Input Module 240 VAC Isolated, 4 points	VersaMax Discrete Input Module, 120 VAC Positive Logic, 16 points	VersaMax Discrete Input Module, 240 VAC Positive Logic, 16 points
Lifecycle Status	Active	Active	Active
Input Voltage	0-264 VAC	0-132 VAC	0-264 VAC
Number of Points	4	16	16
Channel to Channel Isolation	Yes	No	No
Input and Output Response Time- On/Off (ms)	1 cycle/2 cycles	1 cycle/2 cycles	1 cycle/2 cycles
Points per Common	4 groups of 1	2 groups of 8	2 groups of 8
On State Current	7 mA minimum	5 mA minimum	4 mA minimum
Off State Current	3 mA maximum	2.5 mA maximum	1.5 mA maximum
Input Impedance	38.5 kOhms (reactive) at 60 Hz , typical; 46.3 kOhms (reactive) at 50 Hz , typical	8.6 kOhms (reactive) at 60 Hz , typical; 10.32 kOhms (reactive) at 50 Hz , typical	38.5 kOhms (reactive) at 60 Hz , typical; 46.3 kOhms (reactive) at 50 Hz , typical
5V Backplane Current Consumption (mA)	30 maximum	110 maximum	110 maximum
LED Indicators	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present
Dimensions ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Input Modules

Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Modules require a carrier base (IC200CHSxxx).

	IC200MDL243	IC200MDL244	IC200MDL631
Product Name	VersaMax Discrete Input Module, 120 VAC Isolated, 16 points	VersaMax Discrete Input Module, 240 VAC Isolated, 8 points	VersaMax Discrete Input Module 125 VDC, Pos/Neg Logic, Isolated, 8 points
Lifecycle Status	Active	Active	Active
Input Voltage	0-132 VAC	0-264 VAC	0-150 VDC, 125 VDC nominal
Number of Points	16	8	8 isolated inputs
Channel to Channel Isolation	Yes	Yes	Yes
Input and Output Response Time- On/Off (ms)	1 cycle/2 cycles	1 cycle/2 cycles	0.5 maximum
Points per Common	16 groups of 1	8 groups of 1	8 groups of 1
On State Current	5 mA minimum	7 mA minimum	1.0 mA minimum
Off State Current	2.5 mA maximum	3 mA maximum	0 to 0.1 mA maximum
Input Impedance	8.6 kOhms (reactive) at 60 Hz , typical; 10.32 kOhms (reactive) at 50 Hz , typical	38.5 kOhms (reactive) at 60 Hz , typical; 46.3 kOhms (reactive) at 50 Hz , typical	74 K Ohm typical at 125 VDC
5V Backplane Current Consumption (mA)	100 maximum	60 maximum	40 maximum
LED Indicators	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present
Dimensions (W x H x D	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) x 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Input Modules

Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Modules require a carrier base (IC200CHSxxx).

	IC200MDL632	IC200MDL635	IC200MDL636
Product Name	VersaMax Discrete Input Module 125 VDC, Pos/Neg Logic, Isolated, $\mathbf{1 6}$ points	VersaMax Discrete Input Module 48 VDC, Pos/Neg Logic (2 Groups of 8), 16 points	VersaMax Discrete Input Module 48 VDC, Pos/Neg Logic (4 Groups of 8), 32 points
Lifecycle Status	Active	Active	Active
Input Voltage	0-150 VDC, 125 VDC nominal	0-60 VDC, 48 VDC nominal	$0-60 \mathrm{VDC}, 48 \mathrm{VDC}$ nominal
Number of Points	16 isolated inputs	16 inputs (2 groups of 8)	32 (4 groups of 8)
Channel to Channel Isolation	Yes	No	No
Input and Output Response Time- On/Off (ms)	0.5 maximum	0.5 maximum	0.5 maximum
Points per Common	16 groups of 1	2 groups of 8	4 groups of 8
On State Current	1.0 mA minimum	1.0 mA minimum	1.0 mA minimum
Off State Current	0 to 0.1 mA maximum	0 to 0.4 mA maximum	0 to 0.4 mA maximum
Input Impedance	74 K Ohm typical at 125 VDC	28 K Ohm typical	28 K Ohm typical
5V Backplane Current Consumption (mA)	80 maximum	70 maximum	140 maximum
LED Indicators	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present
Dimensions (W x H x D	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) x 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Input Modules

Discrete input modules receive signals from input devices such as sensors, pushbuttons, and switches that can have two states: on or off, open or closed. Modules require a carrier base (IC200CHSxxx).

	IC200MDL640	IC200MDL643	IC200MDL644	IC200MDL650
Product Name	VersaMax Discrete Input Module, 24 VDC Pos/Neg Logic, 16 points	VersaMax Discrete Input Module, 5/12 VDC (TTL) Pos/Neg Logic, 16 points	VersaMax Discrete Input Module, 5/12 VDC (TTL) Pos/Neg Logic, 32 points	VersaMax Discrete Input Module, 24 VDC Positive Logic, 32 points
Lifecycle Status	Active	Active	Active	Active
Input Voltage	$0-30 \mathrm{VDC}$	0-15 VDC	0-15 VDC	0-30 VDC
Number of Points	16	16	32	32
Channel to Channel Isolation	No	No	No	No
Input and Output Response Time- On/Off (ms)	0.5	0.25	0.25	0.5
Points per Common	2 groups of 8	2 groups of 8	4 groups of 8	2 groups of 8
On State Current	$2.0-5.5 \mathrm{~mA}$	1.45 mA minimum	1.45 mA minimum	$2.0-5.5 \mathrm{~mA}$
Off State Current	0-0.5 mA	0-0.7 mA maximum	0-0.7 mA maximum	0-0.5 mA
Input Impedance	10 kOhms maximum	2.4 kOhms at 12 VDC , typical	2.4 kOhms at 12 VDC , typical	10 kOhms maximum
5V Backplane Current Consumption (mA)	25 maximum	70 maximum	140 maximum	50 maximum
LED Indicators	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status. OK LED indicates backplane power is present
Dimensions (W x H x D	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) $\times 50 \mathrm{~mm}(1.956 \mathrm{in})$, not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) $\times 50 \mathrm{~mm}(1.956 \mathrm{in})$, not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) $\times 50 \mathrm{~mm}(1.956 \mathrm{in})$, not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) $\times 50 \mathrm{~mm}(1.956 \mathrm{in})$, not including the height of the carrier or the mating connectors

Discrete Output Modules

Discrete output modules send control signals to devices such as contactors, indicator lamps, and interposing relays that can also have two states. Modules require a carrier base (IC200CHSxxx).

	IC200MDL329	IC200MDL330	IC200MDL331
Product Name	VersaMax Discrete Output Module, 120 VAC, 0.5A per point Isolated, 8 points	VersaMax Discrete Output Module, 120 VAC 0.5A per point Isolated, 16 points	VersaMax Discrete Output Module, 120 VAC 2.0A per point Isolated, 8 points
Lifecycle Status	Active	Active	Active
Output Voltage	85-132 VAC (47-63 Hz), 120 VAC nominal	85-132 VAC (47-63 Hz), 120 VAC nominal	85-132 VAC (47-63 Hz), 120 VAC nominal
Number of Points	8	16	8
Channel to Channel Isolation	Yes	Yes	Yes
Load Current per Point	0.5 A per point	0.5 A per point	2.0 A per point
Input and Output Response Time- On/Off (ms)	<1/2 cycle/<1/2 cycle	<1/2 cycle/<1/2 cycle	<1/2 cycle/<1/2 cycle
Protection	Snubber and MOVs (each output)	Snubber and MOVs (each output)	Snubber and MOVs (each output)
Points per Common	8 groups of 1	Isolated points	Isolated points
External Power Supply	85-132 VAC ($47-63 \mathrm{~Hz}$), 120 VAC nominal	85-132 VAC (47-63 Hz), 120 VAC nominal	85-132 VAC (47-63 Hz), 120 VAC nominal
Load Current	10 mA minimum per point, 0.5 A maximum per point, 5.0 A for one cycle (20 ms) maximum inrush	10 mA minimum per point, 0.5 A maximum per point, 5.0 A for one cycle (20 ms) maximum inrush	10 mA minimum per point, 2.0 A maximum per point, 20 A for one cycle (20 ms) maximum inrush
5V Backplane Current Consumption (mA)	70 maximum	140 maximum	85 maximum
LED Indicators	One LED per point shows individual point ON/OFF status (logic side). OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status (logic side). OK LED indicates backplane power is present	One LED per point shows individual point ON/OFF status (logic side). OK LED indicates backplane power is present
Dimensions (W x H x D	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Output Modules

Discrete output modules send control signals to devices such as contactors, indicator lamps, and interposing relays that can also have two states. Modules require a carrier base (IC200CHSxxx).

	IC200MDL730	IC200MDL740	IC200MDL741
Product Name	VersaMax Discrete Output Module, 24 VDC Positive Logic 2.0A per point w/ESCP, 8 points	VersaMax Discrete Output Module, 24 VDC Positive Logic, 0.5A per point, 16 points	VersaMax Discrete Output Module, 24 VDC Positive Logic, 0.5A per point w/ESCP, 16 points
Lifecycle Status	Active	Active	Active
Output Voltage	17.5-30 VDC, 24 VDC nominal	10.2-30 VDC, 12/24 VDC nominal	18-30 VDC, 24 VDC nominal

Number of Points	8	16	16
Channel to Channel Isolation	No	No	No
Load Current per Point	2.0 A per point	0.5 A per point	0.5 A per point
Input and Output Response Time- On/Off (ms)	0.5	$0.2 / 1.0$	$0.5 / 0.5$
Protection	Short circuit protection, overcurrent		
protection (each output)	No internal fuses (each output)	Short circuit protection, overcurrent	
protection, free-wheeling diodes			
(each output)			

External Power Supply

Load Current	2.0 A at 30 VDC maximum (resistive) per point, 8.0 A max. per module	0.5 A at 30 VDC maximum (resistive); 2.0 A inrush maximum for 100 ms	0.5 A at 30 VDC maximum (resistive); 2.0 A inrush maximum for 100 ms
5V Backplane Current Consumption (mA)	50 maximum	45 maximum	75 maximum
LED Indicators	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.
Dimensions ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Output Modules

Discrete output modules send control signals to devices such as contactors, indicator lamps, and interposing relays that can also have two states. Modules require a carrier base (IC200CHSxxx).

	IC200MDL742	IC200MDL743	IC200MDL744
Product Name	VersaMax Discrete Output Module, 24 VDC Positive Logic 0.5A with ESCP, 32 points	VersaMax Discrete Output Module, 5/12/24 VDC Negative Logic, 0.5 A per point (1 group of 16) 16 points	VersaMax Discrete Output Module, 5/12/24 VDC Negative Logic, 0.5 A per point (2 groups of 16) 32 points
Lifecycle Status	Active	Active	Active
	18-30 VDC, 24 VDC nominal	5/12/24 VDC	5/12/24 VDC
Output Voltage			
Number of Points	32	16 (1 group of 16)	32 (2 groups of 16)
Channel to Channel Isolation	No	No	No
Load Current per Point	0.5 A per point	0.5 A per point	0.5 A per point
Input and Output Response Time- On/Off (ms)	0.5/0.5	0.2/1.0	0.2/1.0
Protection	Short circuit protection, overcurrent protection, free-wheeling diodes (each output)	No internal fuse	No internal fuse
Points per Common	2 groups of 16	1 group of 16	2 groups of 16
External Power Supply	18-30 VDC, 24 VDC nominal	4.75 to $5.25 \mathrm{VDC}, 5 \mathrm{VDC}$ nominal for 5 VDC-TTL mode; 10.2 to 30 VDC, 12/24 VDC nominal for 12/24 VDC mode	4.75 to $5.25 \mathrm{VDC}, 5 \mathrm{VDC}$ nominal for 5 VDC-TTL mode; 10.2 to 30 VDC, 12/24 VDC nominal for 12/24 VDC mode
Load Current	0.5 A at 30 VDC maximum (resistive); 2.0 A inrush maximum for 100 ms	25 mA maximum for 5 VDC-TTL mode, 0.5 A at 30 VDC maximum, 2.0 A inrush maximum for 100 ms for 12/24 VDC mode	25 mA maximum for 5 VDC-TTL mode, 0.5 A at 30 VDC maximum, 2.0 A inrush maximum for 100 ms for 12/24 VDC mode
5V Backplane Current Consumption (mA)	150 maximum	70 maximum	140 maximum
LED Indicators	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.
Dimensions (W x H x D	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Discrete Output Modules

Discrete output modules send control signals to devices such as contactors, indicator lamps, and interposing relays that can also have two states. Modules require a carrier base (IC200CHSxxx).

	IC200MDL750	IC200MDL930	IC200MDL940
Product Name	VersaMax Discrete Output Module, 24 VDC Positive Logic, 0.5A per point, 32 points	VersaMax Discrete Output Module, Relay 2.0 A per point Isolated Form A, 8 points	VersaMax Discrete Output Module, Relay 2.0 A per point Isolated Form A, 16 points
Lifecycle Status	Active	Active	Active
Output Voltage	10.2-30 VDC, 12/24 VDC nominal	0-125 VDC, 5/24/125 VDC nominal; $0-265 \mathrm{VAC}(47-63 \mathrm{~Hz})$, 120/240 VAC nominal	0-125 VDC, 5/24/125 VDC nominal; $0-265 \mathrm{VAC}(47-63 \mathrm{~Hz})$, 120/240 VAC nominal
Number of Points	32	8	16
Channel to Channel Isolation	No	Yes	Yes
Load Current per Point	0.5 A per point	2.0 A for 5-265 VAC, 2.0 A for 5-30 VDC, 0.2 A for 31-125 VDC	2.0 A for 5-265 VAC, 2.0 A for 5-30 VDC, 0.2 A for 31-125 VDC
Input and Output Response Time- On/Off (ms)	0.2/1.0	10.0/10.0	10.0/10.0
Protection	No internal fuses	No internal fuses or snubbers	No internal fuses or snubbers
Points per Common	2 groups of 16	Isolated points	Isolated points
External Power Supply	10.2-30 VDC, 12/24 VDC nominal	0-125 VDC, 5/24/125 VDC nominal; 0-265 VAC ($47-63 \mathrm{~Hz}$), 120/240 VAC nominal	0-125 VDC, 5/24/125 VDC nominal; 0-265 VAC ($47-63 \mathrm{~Hz}$), 120/240 VAC nominal
Load Current	0.5 A at 30 VDC maximum (resistive); 2.0 A inrush maximum for 100 ms	10 mA per point minimum; 2.0 A for 5-265 VAC maximum (resistive); 2.0 A for 5-30 VDC maximum (resistive); 0.2 A for 31-125 VDC maximum (resistive)	10 mA per point minimum; 2.0 A for $5-265$ VAC maximum (resistive); 2.0 A for 5-30 VDC maximum (resistive); 0.2 A for 31-125 VDC maximum (resistive)
5V Backplane Current Consumption (mA)	90 maximum	245 maximum	490 maximum
LED Indicators	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	One LED per point shows individual point ON/OFF state (logic side). FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.
Dimensions (W x H x D	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Analog Input Modules

Analog input modules receive signals from current and voltage input devices. Modules require a carrier base (IC200CHSxxx).

	IC200ALG230	IC200ALG240	IC200ALG260	IC200ALG261
Product Name	VersaMax Analog Input Module, 12 Bit Voltage/Current, 4 Channels	VersaMax Analog Input Module, 16 Bit Voltage/Current Isolated, 8 Channel	VersaMax Analog Input Module, 12 Bit Voltage/Current, 8 Channel	VersaMax Analog Input Module, 15 Bit Differential Voltage, 8 Channel
Lifecycle Status	Active	Active	Active	Active
Input Range	$\pm 10 \mathrm{VDC}$ or 0-10 VDC	$\pm 10 \mathrm{VDC}, 4-20 \mathrm{~mA}$	4-20 mA, ± 10 VDC or 0-10 VDC	$\pm 10 \mathrm{VDC}$
Number of Channels	4	8 Channel to channel isolated	8	8
External Power Supply	None	Range: 19.5-30 VDC including ripple; Current consumption: 100 mA maximum plus load currents	None	None
Resolution	Bipolar mode: $2.5 \mathrm{mV}=8$ counts, Unipolar mode: $2.5 \mathrm{mV}=8$ counts	Current mode: 381 nA nominal Voltage mode: $381 \mu \mathrm{~V}$ nominal	$\begin{aligned} & \text { Current mode: } 4 \mu \mathrm{~A}=8 \text { counts, } \\ & \text { Bipolar mode: } 2.5 \mathrm{mV}=8 \text { counts, } \\ & \text { Unipolar mode: } 2.5 \mathrm{mV}=8 \text { counts } \end{aligned}$	Bipolar mode: $0.3125 \mathrm{mV}=$ 1 counts
Update Rate	0.4 ms	Approximately 20 mS max. @ 50 Hz filter frequency Approximately 16.7 mS max. © 60 Hz filter frequency	0.4 ms	7.5 ms
Accuracy at $\mathbf{2 5}^{\circ} \mathrm{C}$	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale	$\pm 0.1 \%$ maximum of full scale	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale
Input Impedance	Voltage mode: 126 kOhms maximum, Current mode: 200 Ohms maximum	N/A	Voltage mode: 126 kOhms maximum, Current mode: 200 Ohms maximum	Voltage mode: 100 kOhms maximum
Input Filter Response	5.0 ms	N/A	5.0 ms	N/A
5V Backplane Current Consumption (mA)	125 maximum	15 maximum	130 maximum	200 maximum
3.3V Backplane Current Consumption (mA)	N/A	120 maximum	N/A	N/A
LED Indicators	INT PWR LED indicates internally-generated field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates the presence of both logic power and user power. OK LED indicates module status.	INT PWR LED indicates internally-generated field power is present. OK LED indicates backplane power is present.	INT PWR LED indicates internally-generated field power is present. OK LED indicates backplane power is present.
Dimensions ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) $\times 50 \mathrm{~mm}(1.956 \mathrm{in})$, not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) $\times 50 \mathrm{~mm}$ (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) $\times 50 \mathrm{~mm}(1.956 \mathrm{in})$, not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) $\times 50 \mathrm{~mm}(1.956 \mathrm{in})$, not including the height of the carrier or the mating connectors

Analog Input Modules

Analog input modules receive signals from current and voltage input devices. Modules require a carrier base (IC200CHSxxx).

Update Rate

Accuracy at $\mathbf{2 5}^{\circ} \mathrm{C}$	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale
Input Impedance	Current mode: 100 kOhms maximum	Voltage mode: 100 kOhms maximum	Voltage mode: 100 kOhms maximum, Current mode: 200 Ohms maximum
Input Filter Response	N/A	N/A	$24 \mathrm{~Hz} \pm 20 \%$
5V Backplane Current Consumption (mA)	200 maximum	150 maximum	100 maximum
3.3V Backplane Current Consumption (mA)	N/A	N/A	N/A
LED Indicators	INT PWR LED indicates internally-generated field power is present. OK LED indicates backplane power is present.	INT PWR LED indicates internally-generated field power is present. OK LED indicates backplane power is present.	INT PWR LED indicates internally-generated field power is present. OK LED indicates backplane power is present.
Dimensions ($\mathbf{~ + ~ H ~ x ~ D ~})$	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Analog Output Modules

Analog output modules provide voltage or current signals to analog output devices. Modules require a carrier base (IC200CHSxxx).

	IC200ALG320	IC200ALG321	IC200ALG322
Product Name	VersaMax Analog Output Module, 12 Bit Current, 4 Channel	VersaMax Analog Output Module, 12 Bit 0-10V Voltage, 4 Channel	VersaMax Analog Output Module, 12 Bit ± 10 V Voltage, 4 Channel
Lifecycle Status	Active	Active	Active
Output Range	4-20 mA	0-10 VDC	$\pm 10 \mathrm{VDC}$
Number of Channels	4	4	4
External Power Supply	Range: 18-30 VDC including ripple; Current consumption: 160 mA maximum including load current	Range: 18-30 VDC including ripple; Current consumption: 125 mA maximum	Range: 18-30 VDC including ripple; Current consumption: 125 mA maximum

Resolution	$4 \mathrm{uA}=8$ counts	$2.5 \mathrm{mV}=8$ counts	$5 \mathrm{mV}=16$ counts
Update Rate	0.3 ms maximum	0.3 ms maximum	0.3 ms maximum
	$\pm 0.3 \%$ typical of full scale,	$\pm 0.3 \%$ typical of full scale,	$\pm 0.3 \%$ typical of full scale,
Accuracy at $\mathbf{2 5} \mathbf{C}$	$\pm 0.5 \%$ maximum of full scale	$\pm 0.5 \%$ maximum of full scale	$\pm 0.5 \%$ maximum offull scale

5V Backplane Current Consumption (mA)	50 maximum	50 maximum	50 maximum
3.3V Backplane Current Consumption (mA)	N/A	N/A	N/A
LED Indicators	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.
Dimensions (W x H x D	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) $\times 66.8 \mathrm{~mm}$ (2.63 in) \times 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \mathrm{x}$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

Analog Output Modules

Analog output modules provide voltage or current signals to analog output devices. Modules require a carrier base (IC200CHSxxx).

	IC200ALG325	IC200ALG326	IC200ALG327	IC200ALG328	IC200ALG331
Product Name	VersaMax Analog Output Module, 13 Bit ± 10 VDC or 0 to 10 VDC Voltage, 8 Channel	VersaMax Analog Output Module, 13 Bit Current, 8 Channel	VersaMax Analog Output Module, 13 Bit ± 10 VDC or 0 to 10 VDC Voltage, 12 Channel	VersaMax Analog Output Module, 13 Bit, 0-20 mA, 4-20 mA Current, 12 Channel	VersaMax Analog Output Module, 14 Bit Voltage/ Current 1500 VAC Isolation, 4 Channel
Lifecycle Status	Active	Active	Active	Active	Active
Output Range	± 10 VDC or 0 to 10 VDC	4 to 20 mA (default) 0 to 20 mA (configured with jumper)	± 10 VDC or 0 to 10 VDC	4 to 20 mA (default) 0 to 20 mA (configured with jumper)	$\pm 10 \mathrm{VDC}, 4-20 \mathrm{~mA}$
Number of Channels	8	8	12	12 single ended, one group	4
External Power Supply	Range: 18-30 VDC including ripple; Current consumption: 102 mA maximum	Range: 18-30 VDC including ripple; 2A inrush maximum, 100 mA maximum (no load), 185 mA maximum (all 8 outputs at full scale)	Range: 18-30 VDC including ripple; Current consumption: 112 mA maximum	Range: 18-30 VDC including ripple; Current consumption: 2 A inrush maximum 100 mA maximum (no load) 270 mA maximum (all 12 outputs at full scale)	Range: 19.5-30 VDC including ripple; Current consumption: 100 mA maximum plus load currents
Resolution	$1.25 \mathrm{mV}=4$ counts	$4-20 \mathrm{~mA}: 5$ counts $=$ $2.5 \mathrm{uA}(\sim 12.7$ bits) $0-20 \mathrm{~mA}$: 4 counts $=2.5 \mathrm{uA}$ (13 bits)	$1.25 \mathrm{mV}=4$ counts	$4-20 \mathrm{~mA}: 5$ counts $=$ 2.5 uA (~ 12.7 bits) $0-20 \mathrm{~mA}$: 4 counts $=2.5 \mathrm{uA}$ (13 bits)	Current mode: 381 nA nominal Voltage mode: 381 $\mu \mathrm{V}$ nominal
Update Rate	15.0 ms maximum	15.0 ms maximum	10.0 ms maximum	15 ms maximum	7 ms maximum
Accuracy at $\mathbf{2 5 @ X C}$	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale	$\begin{gathered} \pm 0.3 \% \text { of full scale (typical), } \\ \pm 0.5 \% \text { of full scale (max.) } \\ \pm 1 \% \text { of full scale (max.) } \end{gathered}$	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale	+/- 0.3% of full scale (typical), +/- 0.5\% of full scale (max.) +/-1\% of full scale (max.)	$\pm 0.1 \%$ maximum of full scale
5V Backplane Current Consumption (mA)	50 maximum	50 maximum	50 maximum	50 maximum	10 maximum
3.3V Backplane Current Consumption (mA)	N/A	N/A	N/A	N/A	115 maximum
LED Indicators	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates the presence of both logic power and user power. OK LED indicates module status.
Dimensions ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times$ $66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times 50 \mathrm{~mm}$ (1.956 in $),$ not including the height of the carrier or the mating connectors	110 mm (4.3 in) x 66.8 mm (2.63 in) $\times 50 \mathrm{~mm}$ (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) x $66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times 50 \mathrm{~mm}$ (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \mathrm{x}$ $66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times 50 \mathrm{~mm}$ (1.956 in), not including the height of the carrier or the mating connectors	110 mm (4.3 in) x $66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times 50 \mathrm{~mm}$ (1.956 in), not including the height of the carrier or the mating connectors

Analog Mixed Modules

Analog mixed modules provide maximum flexibility by combining inputs and outputs in a single, compact module. Modules require a carrier base (IC200CHSxxx).

	IC200ALG430	IC200ALG431	IC200ALG432
Product Name	VersaMax Analog Mixed Module, 12 Bit Input Current 4 Channel/Output Current 2 Channel	VersaMax Analog Mixed Module, 12 Bit 0-10V Input 4 Channel/Output 0-10V 2 Channel	VersaMax Analog Mixed Module, 12 Bit $\pm 10 \mathrm{~V}$ Input 4 Channel/Output $\pm 10 \mathrm{~V} 2$ Channel
Lifecycle Status	Active	Active	Active
Input Range	4-20 mA	0-10 VDC	-10 to +10 VDC
Output Range	4-20 mA	0-10 VDC	-10 to +10 VDC
External Power Supply	Range: 18-30 VDC including ripple; Current consumption: 125 mA maximum	Range: 18-30 VDC including ripple; Current consumption: 125 mA maximum	Range: 18-30 VDC including ripple; Current consumption: 125 mA maximum
Resolution	$4 \mathrm{uA}=8$ counts	$2.5 \mathrm{mV}=8$ counts	Input: $2.5 \mathrm{mV}=8$ counts, Output: $5 \mathrm{mV}=16$ counts
Update Rate	0.3 ms maximum	0.3 ms maximum	0.3 ms maximum
Accuracy at $\mathbf{2 5}^{\circ} \mathrm{C}$	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale	$\pm 0.3 \%$ typical of full scale, $\pm 0.5 \%$ maximum of full scale
Input Impedance	200 Ohms maximum	120 kOhms minimum	125 kOhms minimum
Input Filter Response	5.0 ms	5.0 ms	5.0 ms
LED Indicators	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.	FLD PWR LED indicates field power is present. OK LED indicates backplane power is present.
Dimensions ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times$ 50 mm (1.956 in), not including the height of the carrier or the mating connectors

RTD and Thermocouple Modules

Specialty modules are available for RTD and Thermocouple inputs. Modules require a carrier base (IC200CHSxxx).).

IC200ALG630

Product Name	VersaMax Analog Input Module, 16 Bit RTD, 4 Channel	VersaMax Analog Input Module, 16 Bit Thermocouple, 7 Channel
Lifecycle Status	Active	Active
Input Range	RTD types: 25, 100, and 1000 ohm platinum 10,50 , and 100 ohm copper 100 and 120 ohm nickel 604 ohms nickel/iron	Thermocouple types: J, K, T, S, R, none (used for mV inputs)
Number of Channels	4	7
Resolution	15 bits plus sign	15 bits plus sign
Update Rate	60 Hz : approximately 210 milliseconds per channel 50 Hz : approximately 230 milliseconds per channel	60 Hz : approximately 60 milliseconds per channel 50 Hz : approximately 70 milliseconds per channel
Accuracy at $\mathbf{2 5}^{\circ} \mathrm{C}$	on voltage measurement: $\pm 0.15 \%$ on resistance measurement on temperature measurement: $\pm 0.15 \%$ on RTD (temperature) measurement	on voltage measurement: $\pm 0.2 \%$ on temperature measurement: $\pm 0.15 \%$
5 V Backplane Current Consumption (mA)	125 maximum	125 maximum
3.3 V Backplane Current Consumption (mA)	125 maximum	125 maximum
LED Indicators	OK LED: green indicates backplane power is present. Amber indicates module fault.	OK LED: green indicates backplane power is present. Amber indicates module fault.
Dimensions ($\mathbf{~ + ~} \mathrm{H} \times \mathrm{D}$)	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times 50 \mathrm{~mm}$ (1.956 in), not including the height of the carrier or the mating connectors	$110 \mathrm{~mm}(4.3 \mathrm{in}) \times 66.8 \mathrm{~mm}(2.63 \mathrm{in}) \times 50 \mathrm{~mm}(1.956 \mathrm{in})$, not including the height of the carrier or the mating connectors

